УДК 551.326.3 (268.52)

Поступила 26 мая 2014 г.

СРЕДНИЕ МНОГОЛЕТНИЕ ХАРАКТЕРИСТИКИ НАРУШЕНИЙ СПЛОШНОСТИ ЛЬДА ПО СПУТНИКОВЫМ ДАННЫМ НА ТРАДИЦИОННЫХ МАРШРУТАХ ПЛАВАНИЯ В ЮГО-ЗАПАДНОЙ ЧАСТИ КАРСКОГО МОРЯ

канд. геогр. наук С.М. ЛОСЕВ, д-р геогр. наук Ю.А. ГОРБУНОВ, канд. геогр. наук Л.Н. ДЫМЕНТ

ГНЦ РФ Арктический и антарктический научно-исследовательский институт, Санкт-Петербург, e-mail: gua@aari.ru

Из всех морей Российской Арктики, расположенных к востоку от Новой Земли, Карское море является пока единственным, где уже более 30 лет плавание судов осуществляется круглогодично. В зимний период в юго-западной части моря современные транспортные суда самостоятельно следуют в дрейфующем льду из Баренцева моря до Енисейского залива без ледокольной проводки. Дальнейшее их движений в Дудинку и обратно происходит по каналу, проложенному в припае Енисейского залива ледоколом и поддерживаемому им от замерзания в течение всей зимы.

Рис. 1. Традиционные маршруты ледового плавания в юго-западной части Карского моря и расположенные на них квадраты для расчета анализируемых характеристик.

В зависимости от ледовых условий, сложившихся в юго-западной части моря, плавание совершается по одному из четырех традиционных маршрутов (рис. 1). Для трех из них участок между точками 3 и 7 длиной около 300 км является общим. Самую большую длину в дрейфующем льду собственно Карского моря (близкую к 1050 км) имеет маршрут III, проходящий через точки 1, 4, 5, 3, 7, а самым коротким является маршрут IV от мыса Желания до Енисейского залива (крайние точки 6 и 7). Его длина близка к 500 км. Протяженность двух других маршрутов I и II, следующих через точки 1, 2, 3, 7 и 1, 3, 7, почти одинакова и соответственно составляет около 950 и 900 км. Координаты крайних точек маршрутов и выделенных на них участков приведены в табл. 1.

Таблица 1 Географические координаты крайних точек участков традиционных маршрутов плавания в юго-западной части Карского моря

No	Широта	Восточная
точки	^	долгота
1	70°35'	58°08'
2	71°27'	66°40'
3	74°06'	70°49'
4	72°50'	57°38'
5	74°09'	59°08'
6	77°02'	68°53'
7	73°36'	80°20'

При форсировании дрейфующего ледяного покрова по любому из приведенных маршрутов по возможности используются нарушения сплошности льда (НСЛ), именуемые также разрывами, если их ориентация близка к направлению пути следования судна. Чем больше протяженность пути по разрывам, тем меньше затраты времени на плавание и тем значительнее его экономическая эффективность.

Возможность реализации успешного плавания судов в сплоченных льдах с использованием НСЛ убеждает в целесообразности учета климатических характеристик разрывов при планировании морских операций в холодное время года (Brestkin et al., 1995). Такие характеристики в данной работе рассчитаны на основе параметров НСЛ, определяемых по снимкам малого разрешения, которые поступают с искусственных спутников Земли (ИСЗ) в режиме непосредственной передачи в инфракрасном и видимом диапазонах.

Наименьшее значение пороговой ширины разрывов, дешифрируемых на этих снимках, составляет около 500 м (Бушуев, 1991). Таким образом, получаемые по снимкам сведения относятся к наиболее крупным нарушениям сплошности льда в море.

Оцифровка (сколка) НСЛ, выявленных при их дешифрировании на снимках, осуществляется с использованием дигитайзера. В ходе ее выполнения рассчитываются координаты точек, которые выбираются на скалываемом разрыве на достаточно малых расстояниях (4—7 мм в масштабе снимка — 22—38 км фактически) одна от другой с таким расчетом, чтобы отрезки между ними можно было считать прямолинейными.

По координатам концов элементарных отрезков вычисляются значения их длины l_i и направления α_i , которые заносятся в электронный архив, где они за каждое наблюдение представлены отдельным файлом. При этом под данными одного наблюдения понимается совокупность всех парных значений l_i и α_i , полученных на рассматриваемой акватории за одну дату.

44

• • • • • • • • • • • • • • • • • • • •	плав	ания з	ва все 1	годы с	исході	ными Д	цанным	ти
Manuny				Среднее на маршруте				
Маршрут	XI	XII	I	II	III	IV	V	за все месяцы
I	9	27	35	38	63	48	26	35

63

43

72

Среднее количество наблюдений в одном квадрате на традиционных маршрутах

Π 10 30 43 71 59 39 41 37 Ш 8 31 39 57 38 30 56 48 22 49 55 IV 64 95 91 58 62

46

39

Среднее за месяц

по всем маршрутам

12

34

Климатические характеристики НСЛ с использованием данных электронного архива рассчитаны за каждый месяц с ноября по май по квадратам 50×50 км, расположенным на традиционных маршрутах плавания (см. рис. 1). Число лет с исходными данными за указанные месяцы несколько различается и увеличивается с 17 в ноябре до 22 в мае. Количество наблюдений, осредненное по квадратам каждого маршрута, в ноябре невелико, затем оно возрастает от месяца к месяцу и в марте на всех маршрутах становится наибольшим (табл. 2). Далее к маю количество наблюдений уменьшается.

Такой ход изменения количества наблюдений вызван тем, что крупные разрывы в дрейфующем льду начинают формироваться только при достижении им стадии серо-белого. Если на севере юго-западной части Карского моря это происходит в основном в первой декаде ноября, то южнее — лишь во второй. Случается, что на юге рассматриваемой акватории в третьей декаде ноября еще отмечаются зоны чистой воды. Уменьшению числа наблюдений в квадратах в осенний период способствует и частое закрытие ледяного покрова на снимках ИСЗ плотной облачностью. В марте, когда в море преобладает однолетний лед, а повторяемость дней с плотной облачностью невелика, разрывы на спутниковых снимках часто наблюдаются в пределах всей акватории региона и изображаются особенно отчетливо. В результате и возникает максимум числа наблюдений в данном месяце на всех маршрутах.

В апреле и особенно в мае, в связи с распадом полей сморози льда и увеличением общей его раздробленности, появляются зоны с отсутствием разрывов, что приводит к уменьшению количества наблюдений с фиксированием НСЛ.

По числу наблюдений на маршрутах плавания выделяется маршрут IV, на котором среднее их количество в квадрате в 1,5-1,8 раза больше, чем на трех других. Среднее число наблюдений в квадрате, рассчитанное по совокупности данных всех маршрутов за все годы, равно 44.

При планировании и реализации морских операций в зимний период из всех сведений о НСЛ наибольший интерес представляют те из них, которые относятся к попутным разрывам. Обобщение опыта плавания ледоколов в сплоченных льдах (Фролов, Клячкин, 2001) показало, что разрывы рационально использовать, если их ориентация отличается от генерального курса следования судна α,, не более чем на 30° , то есть попутными можно считать разрывы, направление которых α_{i} попадает в интервал $\alpha_{m} \pm 30^{\circ}$.

Выясним, насколько неоднозначны возможности использования попутных разрывов на традиционных маршрутах плавания. С этой целью введем характеристики, которые можно использовать как количественные показатели этих НСЛ.

Анализ данных предварительных расчетов показал, что встречаются случаи, когда в конкретном наблюдении среди элементарных отрезков разрывов в квадрате нет ни одного с ориентацией α_v , попадающей в интервал попутных направлений $\alpha_v \pm 30^\circ$. Следовательно, в число вводимых характеристик прежде всего необходимо включить такую, которая позволяла бы количественно оценивать возможность присутствия попутных разрывов на определенном участке маршрута. Данному условию вполне соответствует повторяемость случаев (наблюдений) с наличием в квадрате зафиксированных элементарных отрезков НСЛ попутного направления. Далее этот показатель будем называть более кратко: повторяемость случаев присутствия попутных разрывов.

В качестве второго климатического показателя попутных НСЛ примем среднюю величину их суммарной протяженности в квадрате.

Приведем суть расчета выбранных характеристик и проанализируем результаты их вычисления.

Повторяемость случаев присутствия попутных разрывов P, % — эмпирическая оценка вероятности факта присутствия НСЛ попутного направления независимо от их количества или протяженности. Для заданного месяца k-го года в j-м квадрате величина P_{ik} находится по выражению

$$P_{j,k} = (n_w / n) \cdot 100.$$

Средняя многолетняя повторяемость случаев фиксирования попутных разрывов P_{j} в j-м квадрате за рассматриваемый месяц вычисляется по значениям $P_{j,k}$ как средняя арифметическая величина за N лет:

$$P_{j} = \frac{1}{N} \sum_{k=1}^{N} P_{j,k}.$$

Таким путем климатические значения повторяемости P_j в квадратах на маршрутах плавания получены для каждого месяца с ноября по май. В качестве примера на рис. 2 приведены результаты расчета за апрель. Из них следует, что средняя многолетняя повторяемость случаев присутствия попутных разрывов весьма изменчива в пространстве. Так, на вдольбереговых участках маршрутов у полуострова Ямал (участок 2–3) и у архипелага Новая Земля (участок 1–4–5) ее значения на 40–60 % больше, чем на участках 1-2 или 5-3, направление которых, в отличие от направления предыдущих, близко к широтному.

Осредним по участкам маршрутов рассчитанные в квадратах климатические значения повторяемости случаев присутствия попутных разрывов P_i .

$$P = \frac{1}{M} \sum_{j=1}^{M} P_j,$$

где M — число квадратов на участке.

Вычисленные за каждый месяц средние значения P представлены в табл. 3. Здесь же указаны наименьшие (P_{\min}) и наибольшие (P_{\max}) климатические значения повторяемости в квадратах, отображающие диапазон вариации величины P_j на участке в результате ее пространственной изменчивости. В последнем столбце помещены повторяемости, осредненные на участках за все месяцы с наблюдениями.

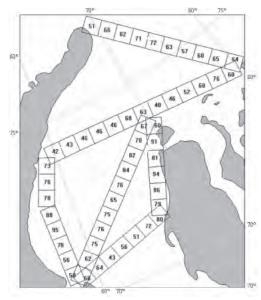


Рис. 2. Климатическая повторяемость случаев присутствия попутных разрывов в квадратах 50×50 км на традиционных маршрутах плавания в юго-западной части Карского моря в апреле.

Таблица 3

Средняя многолетняя повторяемость случаев присутствия попутных разрывов и диапазоны ее изменения на участках традиционных маршрутов плавания в юго-западной части Карского моря

					Весь					
Маршрут	Участок	Величина	XI	XII	I	II	III	IV	V	период наблюдений
I	1–2	P		54	55	47	55	61	72	57
		$P_{\min} - P_{\max}$		39–68	48-67	32-64	30–74	43-80	62-82	
	2–3	P		72	86	74	83	82	62	77
		$P_{\min} - P_{\max}$		58-84	75–97	60–90	72–93	60–94	46–73	
II	1–3	P		51	56	62	65	74	74	64
		$P_{\min} - P_{\max}$		33–65	38–73	43–74	48-83	62-84	64–86	
III	1-4-5	P		69	76	81	81	75	73	76
		$P_{\min} - P_{\max}$		61–79	59–88	69–96	71–95	56–95	61–81	
	5–3	P	61	55	51	51	49	51	71	56/55
		$P_{\min} - P_{\max}$	38–78	47–66	42–64	38–63	41–57	42–68	63–85	
I, II, III	3–7	P	46	59	44	48	52	57	60	52/53
		$P_{\min} - P_{\max}$	33–62	50-70	27–54	31–58	33–70	40–76	53–68	
IV	6–7	P	46	65	58	64	62	65	73	62/65
		$P_{\min} - P_{\max}$	28–59	52–76	36–77	41–86	47–78	51–82	61–80	

Примечание. В ноябре на участках 1-2, 2-3, 1-3, 1-4-5, в связи с малым количеством наблюдений, а в некоторых квадратах и полным их отсутствием, обобщенные климатические значения повторяемости P нельзя считать достоверными, и в таблице они не приводятся. Средние значения для участков 5-3, 3-7 и 6-7 рассчитаны с учетом данных ноября (приведены над чертой) и без их учета (приведены под чертой).

По данным табл. 3 установлено, что между экстремальными климатическими значениями повторяемости случаев присутствия попутных разрывов P_{\min} и P_{\max} на участках маршрутов, с одной стороны, и осредненной в его пределах повторяемостью P, с другой, существует довольно тесная статистическая связь с коэффициентами линейной корреляции 0,93 и 0,95, аппроксимируемая следующими уравнениями:

$$P_{\min} = 1,056P - 17,8,$$

 $P_{\max} = 0,907P + 17,0.$

Средние квадратические погрешности рассчитываемых по уравнениям значений P_{\min} и P_{\max} равны соответственно 4,8 и 3,7 %.

По повторяемости случаев присутствия попутных разрывов на участках маршрутов выделяются три их группы: с повышенными, средними и пониженными ее значениями. В первую из них входят участки 2—3 и 1—4—5, на которых осредненные за все месяцы значения P составляют соответственно 77 и 76 %. Поскольку в каждом наблюдении сведения о НСЛ содержатся за 1 день, то при такой повторяемости попутные разрывы в квадратах данных участков в течение месяца присутствуют не менее 20 дней. Климатические значения средней месячной повторяемости P на участках первой группы с января по май варьируют от 62 до 86 %, а в квадратах — от 46 до 97 %.

Вторая группа представлена участками 1–3 и 6–7. Здесь осредненные по ним за период наблюдений месячные значения климатической повторяемости случаев присутствия попутных разрывов равны 64 и 62 % соответственно, что на 12–15 % меньше, чем в первой группе. Число дней с попутными разрывами в квадратах за месяц в среднем близко к 18. Диапазон изменения средней месячной климатической повторяемости на участках составляет 46–74 %, а в квадратах — 28–86 %.

В третьей группе объединены оставшиеся участки 1-2, 5-3 и 3-7. Средние месячные повторяемости случаев присутствия попутных разрывов здесь могут быть меньше 50 %. Такая ситуация по одному разу отмечается на участках 1-2 (в феврале) и 5-3 (в марте), а на участке 3-7 — трижды (в ноябре, январе и феврале). Значения осредненных по участкам за все месяцы повторяемостей равны соответственно 57, 56 и 52 %, что в среднем на 21 % меньше, чем в первой группе, и на 8 % — чем во второй. Обобщенный диапазон изменения климатических средних месячных значений P на участках составляет 44-72 %, а в квадратах 27-85 %.

Группы участков маршрутов различаются также внутрисезонным ходом изменения среднемесячной повторяемости случаев с присутствием попутных разрывов. На участках первой группы наименьшие значения P отмечаются в декабре и мае, а наиболее высокие — в январе (участок 2—3) и феврале—марте (участок 1—4—5). Ход изменения повторяемости в третьей группе участков в определенной мере противоположен ее ходу в первой группе. Здесь в декабре значения P относительно повышены. Затем они несколько понижаются, но с февраля—марта снова растут и в мае достигают максимума. Во второй группе участков минимумы сдвинуты на ноябрь—декабрь, а максимумы проявляются в апреле и мае. В мае различия между значениями P всех участков минимальны и не превышают 14 %. Не велики они и в декабре (до 21 %). Максимальная разность (42 %) приходится на январь (между участками 2—3 и 3—7). В феврале—апреле различия повторяемости на участках первой и третьей групп остаются значительными и достигают 31—34 %.

Повторяемость случаев с присутствием попутных разрывов в квадратах участков маршрута во многом определяется его направлением $\alpha_{_{_{\! M}}}$ относительно модального направления $\alpha_{_{_{\! M}}}$ нарушений сплошности льда в зоне плавания. За модальное направ-

ление α_m принимается то направление, при котором в скользящем интервале $\alpha_i \pm 20^\circ$ при последовательном изменении α_i через 1° от 0 до 180° суммарная протяженность элементарных отрезков разрывов с направлениями, попадающими в этот интервал, оказывается наибольшей. Сам интервал $\alpha_m \pm 20^\circ$ именуется модальным. При совпадении направлений α_m и α_m все разрывы модального интервала являются составной частью разрывов попутного интервала $\alpha_m \pm 30^\circ$.

С увеличением разности направлений $|\alpha_m - \alpha_w|$ величина угла перекрытия попутного интервала модальным уменьшается. При этом и частота фиксирования попутных разрывов в квадратах маршрута уменьшается. Если указанная разность достигает 50°, перекрытие между интервалами уже отсутствует, имеется только одна общая их граница. Наиболее низкие значения P_j в квадратах отмечаются в том случае, когда разность направлений α_m и α_m близка к 90°.

В зонах дислокации участков третьей группы климатическая модальная ориентация НСЛ в квадратах близка к направлению продольной оси региона. На участках 5-3 и 3-7 она отклоняется от направления маршрута преимущественно на $40-65^{\circ}$, а на участке 1-2 — на $35-70^{\circ}$.

При разности направлений $\alpha_{_w}$ – $\alpha_{_m}$ от 40 до 50°, как было показано выше, небольшая часть разрывов модального интервала может входить в состав попутных. Однако при $|\alpha_{_m}$ – $\alpha_{_w}|$ > 50° они в попутный интервал уже не попадают. В итоге повторяемость случаев присутствия попутных НСЛ на данных участках имеет пониженные значения.

Теперь обратимся к средней многолетней повторяемости случаев с присутствием попутных разрывов, рассчитанной за каждый месяц по полным маршрутам плавания. Полученные результаты (рис. 3) свидетельствуют о том, что на всех маршрутах климатическая средняя месячная повторяемость P от начала периода наблюдений (декабрь) к его концу (май) в целом увеличивается. При этом она составляет более 50 %, а на маршрутах I, III, IV с декабря по май в пяти случаях из шести превышает 60 %. Значения P < 60 % отмечаются только в январе (маршруты III и IV) и в феврале (маршрут I). На маршруте II, в отличие от остальных, с декабря по март климатическая средняя месячная повторяемость не достигает 60 %. Однако в апреле она увеличивается до 68 %, превысив значения на других маршрутах.

Различия между повторяемостью на маршрутах наиболее значительны в декабре–январе и составляют 10–11 %. Далее они уменьшаются и в марте оказываются наименьшими (не превышают 5 %). Затем разность между значениями P снова возрастает, доходя до 8 % в мае.

Таким образом, повторяемость случаев присутствия попутных разрывов на маршрутах плавания в разные месяцы довольно неравнозначна. Это не может не учитываться при организации морских операций в зимнее время. В табл. 4 для каждого месяца указаны маршруты, которые являются наиболее благоприятными для обнаружения и использования попутных НСЛ. Приведена также и средняя повторяемость случаев их присутствия P.

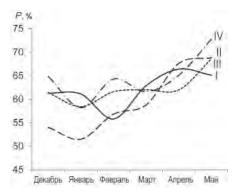


Рис. 3. Внутрисезонный ход изменения климатической среднемесячной повторяемости случаев присутствия попутных разрывов на маршрутах плавания.

Предпочтительные маршруты плавания по повторяемости случаев присутствия попутных разрывов

Характеристики	Месяц								
маршрутов	XII	I	II	III	IV	V			
Предпочтительные маршруты	IV	I	IV	I III	II I	IV			
Повторяемость P , %	64,8	61,1	64,3	62,9 62,0	67,6 66,4	72,8			

В марте и в апреле выделяются два маршрута с близкими значениями *P*. В целом по вероятности присутствия попутных разрывов наиболее благоприятными являются маршруты I и IV. Они входят в число предпочтительных по три раза, тогда как маршруты II и III только по одному. Однако окончательный вывод по этому поводу будет сделан после анализа данных следующей характеристики.

Протяженность попутных разрывов L, км — совокупная длина элементарных отрезков НСЛ, направление которых α , попадает в попутный интервал α ± 30°.

При расчете среднего многолетнего значения L сначала в каждом заданном на маршруте j-м квадрате вычисляется осредненная по числу наблюдений длина совокупности элементарных отрезков попутного направления за рассматриваемый месяц k-го года:

$$l_{j,k} = \frac{1}{M_{w,k}} \sum_{i=1}^{n_w} l_{i,w}.$$

Здесь $l_{_{i,w}}$ — длина элементарного отрезка попутного направления; $n_{_w}$ — число таких отрезков; $M_{_{w,k}}$ — число наблюдений с зафиксированными попутными разрывами в квадрате за данный месяц k-го года.

Средняя многолетняя протяженность попутных разрывов в квадрате в том же месяце L_j вычисляется по значениям $l_{j,k}$ как средняя арифметическая величина за N лет с наблюдениями. В свою очередь по значениям L_j находится климатическая протяженность совокупности разрывов L, осредненная для заданного участка или маршрута в целом по числу расположенных на них квадратов.

Между рассчитанными по участкам маршрутов средней климатической протяженностью попутных разрывов L и ее наименьшими (L_{\min}) и наибольшими (L_{\max})

значениями в квадрате участков (табл. 5), как и при анализе повторяемости случаев присутствия НСЛ попутного направления, выявлена статистическая связь. Однако она не столь тесная, как у предыдущей характеристики. Коэффициенты корреляции L_{\min} с L и L_{\max} с L составляют соответственно 0,73 и 0,86. Аналитически связь выражается уравнениями

$$L_{\min} = 0.630L - 1.30,$$

 $L_{\max} = 1.408L + 0.97.$

В соответствии с ними величина диапазона различия климатической протяженности (Lj) в квадратах участка равна

$$\Delta L = 0.778L + 2.27.$$

С увеличением осредненной длины разрывов на участке (L) ΔL возрастает.

Аналогичная оценка величины диапазона повторяемости случаев присутствия попутных разрывов $\Delta P = P_{\text{max}} - P_{\text{min}}$ показала, что с увеличением среднего значения P на участке эта разность уменьшается, но уменьшение весьма незначительное.

Таблица 5 Средняя многолетняя протяженность попутных разрывов на участках традиционных маршрутов плавания в юго-западной части Карского моря и диапазоны изменения ее значений, рассчитанные в квадратах данных участков

Manusara	Vivoomovi	Damming				Весь период				
маршрут	участок	Величина	XI	XII	I	II	III	IV	V	наблюдений
I	1–2	L		13,6	18,1	14,1	19,7	19,6	22,6	17,7
		L_{\min} – L_{\max}		7–23	6–23	4-22	7–34	13-30	16–27	
	2–3	L		28,0	36,3	32,0	27,3	29,7	22,2	29,3
		L_{\min} – L_{\max}		19–41	14–61	16-41	18–39	16-44	13-30	
II	1–3	L		16,5	20,9	22,9	29,2	28,6	30,0	24,7
		L_{\min} – L_{\max}		5–33	10-27	12–38	16–55	19–38	15–48	
III	1-4-5	L		27,5	26,9	32,4	34,3	27,6	24,5	28,9
		L_{\min} - L_{\max}		17–40	16–39	24-40	23–43	19–38	16–31	
	5–3	L	22,7	18,9	19,4	14,7	18,1	20,7	29,9	20,6/20,3
		L_{\min} $-L_{\max}$	5–37	12-30	15–25	12–16	14-21	13–27	26–33	
I, II, III	3–7	L	17,3	17,2	13,2	15,3	13,5	16,2	16,3	15,6/15,3
		L_{\min} – L_{\max}	8–29	12–22	10–16	9–24	7–19	11–24	13–18	
IV	6–7	L	17,3	24,2	21,4	22,4	23,7	23,5	24,3	22,4/23,2
		L_{\min} – L_{\max}	4–33	14–31	10–35	8–37	15–37	11–39	10–37	

Примечание. В ноябре на участках 1–2, 2–3, 1–3, 1–4–5 в связи с малым количеством наблюдений, а в некоторых квадратах и полным их отсутствием, обобщенные климатические значения протяженности L нельзя считать достоверными и в таблице они не приводятся. Средние значения для участков 5–3, 3–7 и 6–7 рассчитаны с учетом данных ноября (приведены над чертой) и без их учета (приведены под чертой).

Осредненная по участкам маршрутов за каждый месяц климатическая протяженность НСЛ имеет много общего с климатической повторяемостью случаев их присутствия P. По значениям L и внутрисезонному ходу их изменения выделяются те же три группы участков. На вдольбереговых участках 2–3 и 1–4–5, представляющих первую группу, протяженность попутных разрывов, как и повторяемость P, повышена. Осредненные за все месяцы многолетние значения L на обоих участках

одинаковы и равны 29 км, что составляет 58 % от длины маршрута в пределах квадрата. Внутрисезонный ход изменения протяженности L характеризуется увеличением ее значений от начала зимы до максимальных в январе и марте и последующим их уменьшением до минимума в мае.

Средняя месячная климатическая протяженность попутных НСЛ в квадратах участков второй группы близка к 25 км на участке 1-3 и к 22 км на участке 6-7. Указанные значения протяженности составляют 50 и 40 % от длины участка маршрута в квадрате. Ход изменения величины L во времени отличается от такового на других участках меньшими внутрисезонными колебаниями и в целом ее увеличением от начала зимнего периода к маю.

На участках третьей группы 1–2, 5–3, 3–7 суммарная протяженность попутных разрывов в квадратах, осредненная за все месяцы, понижена и составляет соответственно 18, 21, 16 км (36, 42, 32 % от длины маршрута в квадрате). Внутрисезонный ход ее изменения, как и в случае с повторяемостью случаев присутствия попутных разрывов P, противоположен его ходу на участках первой группы. В начале зимы значения L уменьшаются, а во второй половине увеличиваются и в апреле—мае снова становятся повышенными.

Наличие некоторой аналогии в распределении по участкам маршрутов повторяемости случаев присутствия попутных разрывов и их суммарной протяженности, так же как и в изменении этих показателей во времени могло проявиться только при существовании между ними взаимосвязи (рис. 4). Анализ данных показал, что коэффициент линейной корреляции L с P равен 0,91, а сама связь аппроксимируется уравнением

$$L = 0.466P - 6.6$$
.

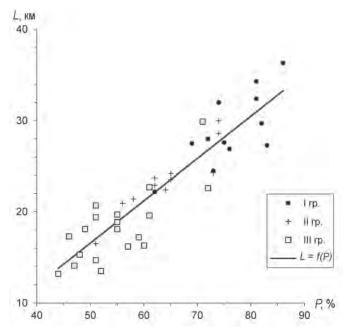


Рис. 4. Связь протяженности попутных разрывов с повторяемостью случаев их присутствия.

Средняя квадратическая погрешность оценки климатической протяженности попутных разрывов на участке по уравнению составляет 2,5 км.

Из данных, представленных в табл. 6, следует, что на участках маршрутов средняя протяженность совокупности попутных разрывов в квадрате является сравнительно низкой. Осредненная по всем участкам ее величина составляет всего 23 км, т.е. меньше половины длины маршрута в пределах квадрата. В то же время повторяемость *P* равна 64 %.

Таблица 6 Осредненные по участкам маршрутов за все месяцы с января по май значения климатической повторяемости случаев присутствия попутных разрывов P и совокупной их протяженности L

Vanagemanuaturea	Участок										
Характеристика	1–2	2–3	1–3	1-4-5	5–3	3–7	6–7				
P, %	57	77	64	76	55	53	65				
L, km	18	29	25	29	20	15	23				

С учетом обоих показателей участки 2–3 и 1–4–5 можно считать наиболее благоприятными для обнаружения и использования попутных разрывов. К самым же неблагоприятным следует отнести участок 3–7, который является общей составной частью маршрутов I, II, III и неизбежно подлежит форсированию при движении по любому из них.

Предпочтительному выбору для плавания вдоль береговых участков способствует и существование здесь Ямальской и Южной Новоземельской заприпайных полыней. Поскольку они значительно шире НСЛ в дрейфующем льду и более стабильны, плавание по ним осуществляется даже при наличии хорошо выраженных попутных разрывов. В работе (Карелин, Карклин, 2012) приведена повторяемость этих полыней. Сравнение ее с повторяемостью случаев присутствия попутных НСЛ показало, что на участках 2–3 и 1–4–5 повторяемость полыней меньше на 16–30 и 8–24 % соответственно. Благодаря этому при закрытии полыней имеется возможность перейти на плавание с использованием попутных нарушений сплошности в дрейфующем льду, которые могут продолжать свое существование.

Перейдем к результатам расчета средней многолетней протяженности попутных разрывов при их обобщении за все месяцы по каждому маршруту в целом (рис. 5). На всех маршрутах за исключением второго отчетливо проявляются ее внутрисезонные колебания. При этом на маршрутах III и IV, как и в ходе изменения повторяемости случаев присутствия попутных разрывов, они совпадают во времени и противоположны колебаниям на маршруте I.

В начале зимы различия протяженности попутных разрывов на маршрутах наиболее значительны. В декабре величина их диапазона составляет 7,5 км. Далее она уменьшается и в феврале становится равной 2,2 км, после чего вновь возрастает до 4,7 км в мае. В целом от начала зимнего периода к маю протяженность попутных разрывов L на всех маршрутах, кроме первого, увеличивается, как это происходит и с повторяемостью случаев их присутствия. Наибольшее изменение величины L за 6 месяцев 8,5 км отмечается на маршруте II, где в декабре она равна 16,7 км, а в мае — 25,2 км.

Приведенные различия протяженности попутных разрывов на маршрутах ошибочно считать несущественными. Напомним, что осредненные значения L относятся

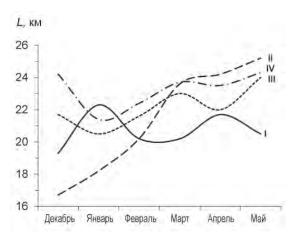


Рис. 5. Внутрисезонный ход изменения климатической средней месячной протяженности попутных разрывов в квадрате на маршрутах плавания.

к одному квадрату, и если при их различии между маршрутами $\Delta L = 2,2$ км составляют 4,4 % от длины маршрута в квадрате, то при $\Delta L = 7,5$ км доходят уже до 15 %. Соответственно, если длина маршрута равна 1000 км, различия в протяженности попутных разрывов составят 44 км и 150 км. Понятно, что при выборе пути следования такие различия целесообразно учитывать. Ниже для каждого месяца с декабря по май указаны маршруты, на которых протяженность попутных разрывов в данном месяце является наибольшей, приведены также и значения самой протяженности L (табл.7).

Характеристика	Месяц								
маршрута	XII	I	II	III	IV	V			
Маршрут	IV	I	IV	IV II	II	II			
L, km	24,2	22,3	22,4	23,7 23,6	24,2	25,2			

В марте, как и при анализе повторяемости случаев присутствия попутных разрывов, выделяются 2 маршрута (IV и II), на которых наибольшие значения L практически одинаковы. Из представленных данных видим, что маршруты II и IV фигурируют по 3 раза, маршрут I — один раз, а маршрут III — ни разу. Таким образом, по протяженности попутных разрывов маршруты II и IV являются наиболее благоприятными.

Из сопоставления вариантов плавания с наибольшими значениями P и L следует, что последние одновременно отмечаются на одних и тех же маршрутах в декабре, январе, феврале и апреле, а в марте и мае — на разных. При этом в марте по наибольшей повторяемости выделяются маршруты I и III, а по протяженности — маршруты II и IV. В мае наибольшие значения повторяемостей отмечаются на маршруте IV, а протяженности — на маршруте II. Для этих месяцев выбор варианта плавания с наиболее оптимальным сочетанием повторяемости и протяженности попутных разрывов выполнен с учетом величины одноименных показателей и разности между ними на выделенных маршрутах. Приведем окончательно установленный таким путем для каждого месяца предпочтительный маршрут плавания и соответствующие ему зна-

Предпочтительные маршруты плавания по повторяемости случаев присутствия
попутных разрывов и по протяженности попутных разрывов

Характеристика	Месяц								
маршрута	XII	I	II	III	IV	V			
Маршрут	IV	I	IV	IV II	II	II			
P, %	64,8	61,1	64,3	62,0 61,6	67,6	72,8			
L, km	24,2	22,3	22,4	23,0 23,7	24,2	24,3			

чения средней месячной повторяемости случаев присутствия попутных разрывов и их протяженности (табл. 8).

Как видим, при учете обеих характеристик попутных разрывов в число предпочтительных вошли все маршруты. Однако при этом три из них (I, II, III) являются таковыми только по одному месяцу, тогда как маршрут IV присутствует в четырех месяцах. В марте выделяются два маршрута с весьма близкими значениями и P, и L. В каждом месяце климатическая повторяемость случаев присутствия попутных разрывов в квадрате на предпочтительном маршруте больше 60 %. Аналогичные значения их протяженности менее изменчивы, чем значения повторяемости.

В связи с относительно малой протяженностью попутных разрывов отметим еще раз, что рассчитываемая на основе данных оцифровки снимков ИСЗ малого разрешения совокупная протяженность НСЛ в квадрате относится только к тем из них, пороговая ширина которых $d \ge 500$ м. Суммарная длина фактически существующих разрывов при всем диапазоне их ширины существенно больше определяемой. Так, по данным четырех съемок, выполненных с самолета радаром бокового обзора (разрешающая способность полученных изображений около 40 м) на полигоне в северозападной части моря Лаптевых в течение третьей декады ноября 1979 г., установлено, что суммарная длина разрывов шириной $d \ge 500$ м составляет только 9 % от их протяженности при ширине $d \ge 40$ м (Лосев и др., 2003). При этом статистические показатели направления НСЛ, полученные при $d \ge 500$ м, с уменьшением задаваемой пороговой ширины до 40 м практически не изменялись. По Карскому морю такие сведения пока отсутствуют. Однако несомненно, что приведенные значения протяженности крупных разрывов попутного направления и здесь составляют лишь незначительную часть от общей их длины, которая в несколько раз больше длины участка маршрута в квадрате.

выводы

- 1. Введенные характеристики повторяемость случаев присутствия попутных разрывов и суммарная их протяженность в расчетном квадрате являются объективными количественными показателями для климатического описания попутных НСЛ на маршрутах плавания и планирования морских операций в холодное время года.
- 2. В распределении этих характеристик в пространстве и изменении их во времени проявляется некоторая аналогия, что обусловлено существованием статистической связи между данными показателями.
- 3. На вдольбереговых участках маршрутов у полуострова Ямал и у архипелага Новая Земля климатические средние месячные значения повторяемости присутствия попутных разрывов и их совокупной протяженности существенно больше, чем на других участках. Это позволяет в случае закрытия существующих здесь заприпайных

полыней перейти на плавание с использованием разрывов в дрейфующем льду, повторяемость которых больше повторяемости полыней. Наиболее неблагоприятным участком по показателям попутных разрывов является участок от острова Белый до Енисейского залива.

- 4. На маршрутах традиционного плавания через Карское море в Дудинку повторяемость случаев присутствия попутных разрывов и их протяженность от начала зимнего периода к маю в основном увеличивается.
- 5. С учетом обоих показателей наиболее предпочтительным маршрутом для плавания с использованием попутных разрывов при близких значениях других ледовых характеристик является маршрут от мыса Желания до Енисейского залива. Климатические значения протяженности и повторяемости попутных разрывов, осредненные по квадратам маршрута, наиболее благоприятны здесь на протяжении четырех месяцев.

СПИСОК ЛИТЕРАТУРЫ

Адамович Н.М. Ледовые условия западного района советской Арктики в холодное время года и учет их влияния на судоходство: Автореф. дис. ... канд. геогр. наук. Л., 1987. 18 с.

Бушуев А.В. Развитие и совершенствование систем и методов ледовых наблюдений // Проблемы Арктики и Антарктики. 1991. Вып. 66. С. 170–183.

Карелин И.Д., Карклин В.П. Припай и заприпайные полыньи арктических морей сибирского шельфа в конце XX – начале XXI века. СПб.: ААНИИ, 2012. 180 с.

Лосев С.М., Горбунов Ю.А., Дымент Л.Н. Оценка характеристик разрывов в ледяном покрове моря Лаптевых по снимкам самолетного радара бокового обзора и снимкам спутников Земли «Метеор» и NOAA // Метеорология и гидрология. 2003. № 2. С. 59–68.

Фролов С.В., *Клячкин С.В.* Учет влияния ориентации разрывов в ледяном покрове на скорость движения судна во льдах // Труды ААНИИ. 2001. Т. 443. С. 103-111.

Brestkin S.V., Gorbunov Yu.A., Losev S.M. Results of statistical analysis satellite date on discontinuities the ice cover in south-western Kara Sea and their possible use for planning sea operations during the winter-spring period / POAC'95, August 15–18, 1995, Murmansk, Vol. 3. St. Petersburg, 1995. P. 60–68