и связывает возникновение проблемы с антропогенными факторами. В свою очередь, научное сообщество тоже продвигается вперед в направлении популяризации результатов исследований, переводу их на обыденный язык, понятный населению, представителям бизнеса и политикам. Расширение диалога между научным сообществом и гражданским обществом поможет сфор-

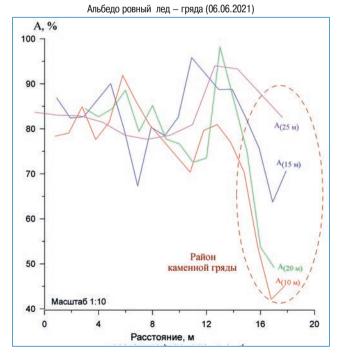
мировать успешный план адаптационных решений. Это важная и актуальная задача, поскольку в ближайшие годы всему обществу неминуемо придется приспосабливаться к климатическим изменениям.

К.О. Шаповалова, О.А. Анисимов, А.А. Ершова ФГБУ «Государственный гидрологический институт)

СОВМЕСТНЫЕ ИСПЫТАНИЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ НА ЛАДОЖСКОМ ОЗЕРЕ

Совместные испытания беспилотных летательных аппаратов (БПЛА) прошли на экспериментальной базе ААНИИ на Ладожском озере. Основная цель экспериментов — оценка технических возможностей различных типов БПЛА и внештатного навесного оборудования (дополнительные измерительные блоки) в условиях, приближенных к арктическим. Полеты проводились над припаем Ладожского озера в районе поселка Осиновец, имеющим неоднородный по толщине снежный покров, и в районе стационарной полыньи в устье р. Невы (район г. Шлиссельбурга). В экспериментах принимали участие специалисты Института физики атмосферы РАН (ИФА), Московского авиационного института (МАИ) и ААНИИ. Наш институт был представлен специалистами ОВОА, ВАЭ (оператор квадрокоптера А.С. Парамзин) а также сотрудником отдела подготовки кадров — Валентиной Кашковой (руководитель Е.А. Павлова, отдел ледового режима и прогнозов).

Специалисты МАИ привезли уникальную модель, которая сочетала в себе преимущества коптера (аппарат взлетал и садился вертикально, с помощью четырех двигателей) и летающего крыла (горизонтальное перемещение осуществлялось с помощью основного двигателя). БПЛА МАИ оборудован датчиками температуры и влажности воздуха, а также уникальным комплексом, позволяющим определять структуру турбулентности в приземном слое атмосферы. Для верификации данных о турбулентном


режиме атмосферы на поверхности льда был развернут комплекс USA (ультразвуковой анемометр), предоставленный специалистами ИФА. ААНИИ и ИФА использовали стандартные модели квадрокоптеров (DJ Phantom 4 Pro и DJI Mavic Рго). Модель ААНИИ располагала специальным измерительным блоком (know-how), разработанным в отделе ледового режима и прогнозов (разработчики С.С. Сероветников, А.М. Безгрешнов), который позволяет оценивать альбедо и ИК-температуру подстилающей поверхности. Модель БПЛА ИФА была оборудована тепловизором. Для верификации этих данных на льду был развернут совместный измерительный комплекс, включающий в себя следующие датчики: радиометр CNR-1 (Kipp&Zonen), пиранометры M-80 (Россия, ГГО) и CMP-11 (Kipp&Zonen), а также фотометры LS-192SA (LICER).

Полеты осуществлялись по одинаковым маршрутам и на разных высотах. Основная цель совместных полетов — определить чувствительность датчиков к меняющимся характеристикам подстилающей поверхности (толщина снега, площадь открытых участков льда и т. п.). Поскольку на припае Ладоги отсутствовали торосы и загрязненный лед, их роль взяли на себя... каменистые гряды и густые заросли камышей. Оба объекта отличались от поверхности озерного льда как по своей морфометрии, так и по цвету. Пример одного из полетов БПЛА ААНИИ представлен на рисунке. Действительно, гряда торосов, имея отличный от снега и льда цвет, а также геометрию (равнобедренный треугольник в поперечном разрезе), была «замечена» БПЛА ААНИИ с различных высот.

Результаты совместных экспериментов выявили достоинства и недостатки различных моделей и измерительных комплексов, а также позволили сформулировать в первом приближении программы совместных экспериментов ААНИИ, ИФА и МАИ на архипелагах Шпицберген и Земля Франца-Иосифа, в Антарктиде, а также на ледостойкой самодвижущейся платформе (ЛСП), первый рейс которой запланирован на осень 2022 года. Специально для этой экс-

педиции ААНИИ приобрел профессиональный БПЛА конструкции ООО «ГЕО-СКАН» (Санкт-Петербург). Размещение дополнительного оборудования, сконструированного в ААНИИ, на грузовой платформе этого БПЛА значительно повысит эффективность его использования. В первую очередь это касается исследования морфометрических характеристик поверхности льда (формы отдельных торосов и гряд, повторяемость гряд и обширных всторошенных участков по маршруту полетов), количественной оценки площадей, занятых снежницами, разводьями и полыньями, характеристик энергомассообмена.

Б.В. Иванов (ААНИИ)

